
AD-MO0 865 KANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE F/S 9/2
PORTABILITY OF OPERATING SYSTEM SOFTWARE.(U
JUN 81 V E WALLENTINE DAA629-78-G-0200

UNCLASSIFIED TR-81-05 ARO-1660.T-A-EL NE

E,;/EI/EEI/EI
NIIIIIIII
LIIIIIIII

II

LEVEL; Ako 11(a 1 .- A-
PORTABILITY OF OPERATING SYSTEM SOFTWARE,

FINAL TECHNICAL REP.T. - ,

V. E. WALLENTINE

JUNE 1, 1981

U., S. ARMY RESEARCH OFFICE

vDAAG 29-78-G-0200

KANSAS STATE UNIVERSITY

C3,

APPROVED FOR PUBLIC RELEASE.:
DISTRIBUTION UNLIMITED

IICLA551p

StCukITY CLA-S.I ICATION Or T.i. p..rr flwlit-i P-l.. PFee.dI

REAL' INS"IUtICTI(IVS
REPORT DOCUMAENTATION P AGE DEF1RE COMPLETING V4mM

1REPORT HMUER 2. GOVT ACCESSION NO. 3. RICIPICNT-1 CATALOG NUMbiL#4

4. TITLE (oadS.b9uUI.) S. TYPE OF REPORT & PERIOD COVERED

'Final Technical Peport
Portabilit of Operating System Software Sept. 1979-March 1981

6. PERFORMING ORG. REPORT NUM13CR

____ ___ ____ ___ ____ ___ ____ ___ ____ ___ ___ TR-81-05
7. AUTHOR(e) S. CONTRACI OR GRANT NUMSER.)

V. E. Walentine DAAG 29- 78-G-200I,

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRIAM LLEMFNT.PRO.IECT, TASK

Department of Computer ScienceAR,&WOKUINMBS
Kansas State University
Manhattan, KS 66506_____________

to. CONTROLLING OFFICE NAME AND ADDRESS *12. REPORT DATE

U. S. ArrW Research Office June 1., 1981
Post Office Box 12211 13. NUMBER OF PAGES

Research Triac-,1e Phnrk. NC 27700 40
14. MONITORING AGLMCY NAME & AOORESS1.I dI~olt r ee.I Controljnd Office) IS. SECURITY CLASS. (ofthi e port)

Army Institute for Research in .Managmint
Inormation Syste-ns and Conuuter Science Unclassified

Georgia InstititeofTcnlgIS.ECASFC1000NROG
Atlanta, Georgia ofTcnlg .lSCEULEIIAIN/ONRD

16 DISTRIOU710N STATEMENT (of thle. Port)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of Lhe obseualct angered In Block 30. It different thod Report)

NA

I$. SUPPLEMENTARY NOTES

* The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

It. KEY WORDS (Contlinue an reverse sidte c.e~ ff ooi ary d tdontt V 019CA niitsater)

* Portable, Adaptable, Network Operating System, Software Configura-

tidon.

34L AOSTRACT rCWb. tili ,ir si sele it nceeevo- stli donrifl br block nbe.)

In this document we summarize the resiilts of a study into the adapt-
ability of system software to a computer network. WIe first discuss
the structure of a Network Adaptable Executive - (NADEX) written in
concitrrent Pascal. We then discuss the performance of NADEX and the
impact of concurrent Pascal on the performance of NADEX..

lD~ 1473 ED1liONOF 01 1 OV -5ISOGSOLC TC UNCLASSIFIED

FIIAL TECHNICAL REPORT:

PORTABILITY OF OPERATING SYSTE1.[S SOFTihARE*

V. E. Uailentine
Principal Investigator

I

TR-81-05

Computer Science Department
Ka.isas State University

May 1, 1981

Tis research was supported in part by the Army Insttute 'or :eer_:n
in Mtanagement, information, ana Coi;:puter ,y;te: i unCer -rnt : utbr
DAAG 29-7 -1-2CO from the Army Researoh Of:'ice.

Table of Contents

Page

1.0 Research Objectives ... 1

2.0 Research Results .. 4
2.1 Introductory NADEX Concepts I
2.2 Adaptability of !ADEX Layers 10
2.3 Performance of NADEX 15

3.0 Future Work ... 19

4.0 Annotated Suomnary of Papers and Reports 22
4.1 Papers Published Outside KSU 22
4.2 KSU Technical Papers 25

5.0 References .. 32

6.0 Prototype Nodule Sizes 35

7.0 Participating Scientific Personnel36

Low..

II

1.0 a Obiectives

The objective of this research was to investigate the portability

of operating system (OS) software. True porcability is interpreted as

the ability to run a program unchanged on multiple heterogeneous host

machines. The basic heterogeneity of such host computers means that any

OS must be changed to accommodate low-level architectural features.

Therefore, we chose to study the structure of an adaptable OS which can

execute on various machine, operating system, and computer network

architectures. This research effort has produced the following results:

1. an adaptable core operating system written in Concurrent
Pascal,

2. a network adaptable executive (operating system) which
supports distributed programming,

3. a distributed program construction and control system, and

4. performance comparisons of high-level language based

operating systems under structural variations.

During this study, we produced three published papers (and one still in

preparation), eleven technical reports, and 30,000 lines of Pascal and

Concurrent Pascal [5.12 code which constitute a Network ADaptable

EXecutive (NADEX) and its program development subsystems.

In this document we will describe our approach to porting the

various layers of an operating system, the basic services and structure

of the NADEX systems, and their performance. We will also relate each

element of the system to our reports and papers whose abstracts appear

in Section 4. TIn order to distinguish these papers from other

references, the other references are in Section 5.

The approach we have taken is to study the functionality and

layering of a distributable operating system, define the portability

properties of each layer, implement the system (including its program

2

development subsystems), and then test its performance. The result is

NADEX. it has two layers--a distributed programming environment and a

core operating system. the core operating system is ported relatively

easily due to its implementation in a strongly typed concurrent

language--Concurrent Pascal. It provides a mejsage-passing core on

which all of the NADEX distributed programming environment is

implemented. The portability of the programming environment is based on

this ability to pass messages between programs in what we call a

software configuration.

These configurations are general graphs of communicating programs

(sequential or concurrent) which can be distributed across a computer

network. The NADEX distributed programming environment is a software

configuration itself; and therefore it is adaptable to other

message-based core operating systems (UNIX [5.71, for example) and is

distributable across a network. This configuration, in turn, supports

the creation, distribution, initiation, synchronization, and termination

of distributable user software configurations.

NADEX has been implemented and is running as a prototype on a

Perkin-Elmer (Intercata) 8/32. It is ready to be tested in a network

environment. In addition, the feasibility of porting it to other core

operating systems such as UNIX, UCSu Pascal system, and Perkin-Elmer's

OS-32/MT has been studied. All seem so be feasible under varying

degrees of effort. UNIX seems to be a willing host while the latter twc

will involve mere effort.

de have also tested the p-erformance of -he NADEX core operating

system under various structural changes. Ferfcrmance experiments were

carried out which isolated (1) the impact of a centralized buffer system

3

versus a de-centralized one as the central element of the NADEX core CS,

(2) the impact of a high-level language versus an assembler language

kernel, and (3) the impact of a multi-level concurrent program

(hierarchical virtual Concurrent Pascal machine) kernel.

In Section 2, we overview the layering of the NADEX systems, their

relationship to other core operating systems, and the distributed

programming tools which have been developed. We also present the

results of the performance experiments.

2.0 Results

2.1 Introductory NADEX Concepts

The results of this research are the NADEX core operating system,

the NADEX distributed programming environment, and the performance and

portability properties of each. This section contains a discussion of

the function and layering of tne NADEX systems and the impact on the

adaptability of this layering. This section concludes with a discussion

of NADEX performance measures.

MADEX is a distributed programming environment and a core operating

system whose objective is to support modular programming. This concept

of "programming in the small" which has been so successful in UNIX

[5.7]--in the form .- of pipelines of communicating sequential

processes--is extended to support general graphs of communicating

programs under NADEX. These general graphs are called software

configurations and consist of nodes which communicate via Data Transfer

Streams (DTSs). These DTSs are full-duplex in nature and, therefore,

support bi-directional communication between any two nodes which they

connect. Nodes access DTSs via ports. These ports are

distribution-independent and, therefore, permit nodes of a configuration

to be distributed across a computer network without reprogramming.

NADEX supports three programmer views--the single node programming

view, the data flow abstraction, and the overall software ronfiguraticn

structure. It provides the compilers and PREFIX for sequental and

noncurrent programs, the :-Z zeraclonz, and the conf l zu ra' cn

descriptor for a jiotri'utable onfig'ration, rescectively, :'zr these

programmer rews. lt aisc 7ermnts exressi:n f these views in a ser

tailored system. Command Processors, utility sutsystems such as fi'e

5I

systems), and configuration description languages can be specified by

the user. These systems can be constructed upon UADEX which provides

only the essential elements of an operating system--interprocess

communication, a representation for distributable, communicating

processes (software configurations), and resource allocation. It is the

DTS concept which permits software configurations to be distributed

across a computer network controlled by NADEX.

NADEX supports a concept we call a software configuration--referred

to as merely a configuration throughout this document. A configuration

consists of a collection of nodes connected by data transfer streams

(DTS's). Nodes can be user programs (both sequential and concurrent

languages such as Sequential Pascal and Concurrent Pascal), file access

nodes (for accessing files within the NADEX file system), I/C device

access nodes (for accessing I/O devices not supported by the ?ADEX file

system), or external configurations such as subsystems.

Nodes within the configuration are connected by DTS's which are

also called connections. Each connection consists of two bi-directional

components--data and parameter. The data component transfers data in

page-sized blocks (a page is 512 bytes) and interfaces to the user

program at the page, logical record, or character level. The parameter

component transfers small parameter blocks typically used for control

information. The data and parameter components are totally independent.

The two directions of each component are independent in the sense that

each direction has its own queue, but the ;ser proccc restrict:.ons are

defined in terms of the bi-directional components.

For purposes of these discussions, we cill sceak 3f a nc e ssuing

reads and writes to a DTS. These should be assumed to be read-,rage and

write-page requests for the data component, and read-parm and write-parm

requests for the parameter component. The blocking of character and

logical record data into pages is handled by a PREFIX of the nodes ana

will not be discussed here. Unless otherwise specified, all discussions

apply equally to data and parameters, and no distinction will be made.

There are no structural restrictions on the graph formed by the

nodes and connections (DTS's). In particular, it need not be linear '

in UNIX [5.7]) or hierarchical. It need not even be acyclic or

connected. Nodes are not precluded from having connections to

themselves. Thus, the configuration is described by a (labeled)

undirected graph. The labeling occurs where each connection enters the

two (not necessarily distinct) nodes it connects.

The user programs (as well as the various system routines which

implement the other nodes) address the connections emanating from each

node by DTS identifiers local to the node. These local DTS identifiers

are also called port numbers. The meaning of the data stream associated

with each port is defined by the program. Port numbers are generally

assigned by the programmer starting with one. These port numbers are

the labels on the configuration graph.

The structure of a configuration is defined by an interactive (PCD)

construction program which builds a file called a Partial Configuration

Descriptor (PCD). The PCD defines the structure of the configuration

and the type (user program, file access, etc.) of each node. PCD files

can be hierarchical so that tney can be constructed in a modular manner

as a compcsition of other PCDs. When the user requests that a

configuration oe run, via a terminal command language, the PCD _s -ec

along with information from the command to construct a configuration

7

descriptor (CD). The configuration descriptor includes all of the

_nformation about the configuration including, for example, the names of

the files to be accessed by the file access nodes. The configuration

descriptor contains enough information for the system to ai'cate

resources across the network. This set of distributed programming tool3

which are available under NADEX is illustratec in Figure I. In addition

to the PCD construction tools, the structure of the PCD can be snown

graphically as well as textually as seen in Figure 1. Thus, the 7C

Workbench provides the user with the ability to specify general graphs

of programs in a terminal command language, construct tnem 4n a

hierarchical manner and automatically generate graphic and text output.

The set of programs and tools of Figure 1 are documented in repcrts

4.2.4 through 4.2.8. !f the NADEX programming system is used Dn a

single machine, the configuration is submitted to the 'IADEX core

operating system for execution.

The PCD Workbench programs permit the user to specify the manner In

which the configuration is to be distribute, across a computer network.

Thus, the CD contains information about the residence Ef cata and

programs within the network. Given this Ne twork Configuration

Descriptor (NCD), the NADEX distributed programming envircnment can

distribute the configuration across the network; and it can initiate,

synchronize, and terminate the individual parts of the configuration.

The manner in which this is accomplished is illustrated in Figure

2. The NCD is broken-up into the parts (called local zwhich are to

be run on the separate macines. The " Ds are sent to a ne-wor,<

configuration control " NCC progr am cn eacn acoine. , ,CC prcgr-ams

across the network thus 'ooperate to synchronize the Ini-tation.

PCD 0
n~1n

Configuration

Gesaphicto
Displayorr
Program 20

C Cc -,a

eData err sW ' c

-~~ I1ne u o e mlmne

Network
Con f igurati on
Descriptor

N e t..4or k
Conf igura ti on

Control
(NcC)

Termi nation
Status

NCC on ~ NCC on CcM1achine M 2M

m 1

Legend:

$ Activation of local ccnficuration on local NADEX
ell-kncwn inter-'ICC oor~s

4~Dynriaic conr ecticn of Dorts via net-viork 'PC
,atz~a structure

F : GlUDE 2

DISTR3TBPUT DF SOFT' AE C'ONJFTURPJT:,NS 4CP.OSS A CC11 4P117ER 'IE-'oCPK

execution, and termination of distributed configurations. The execution

of an LCD is carried out by a local NADEX or other core operating. The

implementation of the data exchange between nodes (DTSs) is via a

network inter-process communication system called MIMICS. More cetai

on the components of each element of NADEX is presented in the next

section.

2.2 Ada:gability Layers

Figure 3 contains an illustration of the implementation structure

of the NADEX distributed programming environment and its relationship to

the NADEX core operating system and the UNIX core operating system. :n

the remainder of this section, the functions of the components of this

system will be discussed. The porting properties of NADEX will also be

discussed and these will be illustrated in Figure 4.

The NADEX core operating system is responsible for execution of

local configuration descriptors. The properties of this core operating

system are described in reports 4.2.1 through 4.2.3. Given that UNIX

supports message-passing between processes, it could be used as the core

operating system. However, as described in report 4.2.10 UNIX needs

additional facilities to support multi-user subsystems. The PORTS

facility of Sunshine [5.0] and Zucker [5.8] make it suitable as a core

operating system onto which the NADEX distributed programming

environment (DPE) can be adapted.

The command processors (MC, UNIX, and D0), the hierarcnical file

subsystem (HFSS,, the link program (LINK), the network file subsystem

NFSS), the SUBMIT node, the network configuration control NCC;, and

"FtI I

I II

i .I * I .

z IN,

-J~~~I u ~Tf;_ a

C) bc L . 0-

C'~2. 0

-L6 - a .
--------------- F - K ' ___ __0

z .2

I"'

10

C.,0

14 .~I 0-

12

PORTABLE
CODE

(PROGRAMS) Q
S6 Iel

PROGRAM
INTERCONNECTION AND
RESOURCE MANAGE',IENT

02

DATA FLOW
CONTROL

KERNEL

MACHINE

ARCHITECTURE
Ln r- -1

LJ
CD

71

ri'-,I /,

Q l

y/

CON F!
INT-

c G
T C 1,1 T I AT 10,

VS

13

the transport level (XMS-message system) are all programs in

network-wide software configuration. The command processors, NCC and

LINK programs have already been discussed, and the HFSS is a prototype

UNIX file system. The SUBMIT node submits a local configuration

descriptor to the local core operating system and returns its completion

code to NCC. The NFSSs communicate across the network to control files

across the network. Finally, the transport service (MIMICS) moves data

between ports on separate machines.

In Figure 4 there is a view of the implementation structure of the

NADEX core operating system. We will refer to this figure in describing

the adaptability properties of NADEX. The outer ring (1) of the onion

consists of configurations. The NADEX DPE resides at th.s level.

Therefore, both the NADEX core operating system and UNIX with PCRTS will

support the NADEX DPE. As shown in Figure 3, a small map between data

transfer streams and pipes in UNIX must be added to SUBMIT to adapt the

NADEX DPE to UNIX. (This map has been programmed but not debugged due

to lack of a good UNIX system available.)

The closer one gets to the center of the onion, the more machine

and/or operating system dependent an adaptation of NADEX DPE becomes.

Since all of NADEX DPE was written in Sequential Pascal, it adapts to

message-based core operating systems very well. Only a Pascal compiler

and a SUBMIT map are needed. This level of effort is on the order of

one man-month. Furthermore, the NADEX core operating system (rings 2

and 3) are written in Concurrent Pascal and, therefore, port tirectiy to

any system which supports hierarchical Concurrent Pascal programs. Ring

4 is the Concurrent Pascal kernel. It is written in Sequential Pazal

and ports nicely to P-code type machines SUcn as the Western Digital

_I

Pascal Microengine.

Four feasibility studies were arried out '.nder this research

effort to ascertain the effort necessary to adapt :he NADEX DPE tc

several machine and operating system znvironments. It s currently

running on a Perkin-Elmer (Interdata) 8/32. The first experiment was to

host it on a UNIX system. It took about one month's effort to code.

The second experiment involved studying the Concurrent Pascal compiler

to ascertain the effort to generate P-code for the Western Digital.

This took about four (4) months effort in its preliminary work. It

would take another two months to complete the task--total of six Morths

effort. This study is documented in report 4.2.11.

The objective of the third and fourth feasibility studies waz to

assess the difficulty of integrating the facilities of the NADEX core OS

into existing core operating systems. The operating systems chosen were

Perkin-Elmer's OS-32/MT and the UCSD Pascal P-system. The approach waZ

to use the kernel facilities (ring 4) of eacn OS q:; tnen integrate

rings 2 and 3 code of NADEX into these operatinr systems. We programeC

ring 3 for both machines--in assembly language for the Perkin-Elier

operating system and in UCSD Pascal fir the other. :n both cases, it

took two month's effort each. Ring 3 seems to be about twice as

complex. Therefore, assuming that memory and other resources are enougn

to hold NADEX, six months' effort is a good estimate of the :ota.

porting effort per system. Of course, the rate of generatizn and

understanding of this level of -oce is extremely sensite t e

quality of the programmer.

15

2.3 Pefomac oL N ADEX

The study of the performance of NADEX was carried out in two

phases. The first phase was to instrument NADEX and record the

percentage of run-time that NADEX spent in each ring. The second phase

involved recoding rings 3 and 4 and comparing the performance of the new

and old versions. Table I contains the percentage of time in each ring

for a three-node configuration where the nodes only pass messages

between each other and do no real computation. The objective is to

isolate the elements of the core OS which can be improved in speed and

get the most improvement in overall performance of NADEX.

% time spent

RING 4 29.75
RING 3 15.00
RING 2 40.00
RING 1 15.25

Table I

It is clear from Table I that the critical factors to performance

are the kernel and the centralized buffer (data flow) manager. :n the

original form of NADEX, the data (pipeline) buffer manager (called the

PBM) was written as a decentralized manager so that contention for

buffers would not be a bottleneck if the core 03 were to be run on a

multiprocessor with shared memory. In order to test the overhead of

this structure, we recoded the PBM into a 2entralized verslon and tested

the performance of both against the performance of an assemblier buffer

manager :n 3S-32,MT--a representative)f 'urrent cay persting .y7emz.

Table 1i gives tte uIme to transfer Dne message between two noces

all tnree mcdules.

16

Thus, it is clear that the centralized PBM is superior to both other

methods and drastically improves the performance of NADEX; and it is

also written in a high-level language.

Transfer Time

Decentralized 10.0 milliseconds
Centralized 2.3 milliseconds
Assembler 4.0 milliseconds

Table II
PBM Performance

The next most critical element of performance was the kernel of

Concurrent Pascal--ring 1. The only degradation in performance that we

envisioned was the difference in performance of Pascal vs. assembler

language. We chose to code it in assembler as well. The assembler

kernel ran only 5 percent faster than the kernel written in Pascal.

This was a surprise. We expected an improvement of at least 25 percent.

However, it does give an indication that a portable kernel writtrn in

Pascal does not incur a substantial performance penalty.

It is interesting to note that the code size of the assembler

kernel was 33 percent smaller than the size of the Pascal kernel. Thus,

recoding in assembler saves considerable space but does not improve

performance substantially. The size of code of each module in NADEX is

presented in Section 6.

During the course of this research effort, we developed the ccncept

of a Concurrent Prefix. This is similar to Per Brinch Hansen's Pr'efix

[5.1] for Sequential Pascal except that it permits Ccncurrent as as

Sequential Pascal programs to be executed and have services to the lower

17

level Concurrent Pascal program--the OS. In this case, it is NADEX.

This provides a true hierarchy of virtual Concurrent Pascal machines.

This is illustrated in Figure 5. This virtual machine facility adds

significant levels of complexity to the Concurrent Pascal kernel. We

measured the performance of both versions of the kernel. We found that

the virtual CPascal machine kernel ran 42 percent slower than the

non-virtual machine kernel. Thus, the kernel overhead to maintain the

hierarchy of virtual machines is a signficant performance factor; and

only some microcode or hardware assist will improve the performance.

LEVEL 0 PROCESSES

L E V E L I SEQU EN TIAL

P R 0 C E S S E S PASCAL
PRO GR AM

10 (DEV,

PARM)

LEVEL I CPASCAL PROGRAM

MONITORS, ETC,

CONCURRENT SEQUENTIAL

PREFIX PREFIX

i LEVEL 0 OS (NADEX) -

MONITORS, MANAGERS, AND CLASSES

KERNEL

FIGURE 5

VIRTUAL "PASCAL "ACH! ,E

19

3.0 Future lork

Under this research support, a Network ADaptable EXecutive (ADEX'

has been developed which provides a distributed programming envirorment.

This executive is implemented in Concurrent Pascal; the results of

performance testing on NADEX established the viability of a highly

structured concurrent language for implementing operating systems. The

strong typing of Concurrent Pascal provides the relative portability.

Extensions to this work fall in two areas: work to improve the utility

of the NADEX systems and research into distributed computing for which

NADEX is an excellent testbed. in the area of extending the utility of

NADEX, a modified version should be developed for personal computers.

NADEX should also be recoded into the ADA programming language to

improve its portability. In the second area, new distributed

programming tools need to be developed. 3ADEX will serve as an

excellent development environment and a good performance test load.

In order for an operating system and its support software to be

truly portable, it must be written in a language which has wide

acceptance as a standard; and it must have the support of industry,

academia, and the federal government to provide compilers for many

machines. ADA is such a language. The NADEX distributed programming

environment and the NADEX core operating system would be even more

portable if written in ADA. This task is relatively straightforward

because of the closeness in philosophy and typing of ADA and Concurrent

Pascal. The NADEX distributed zrcgramming envirnment 2ouiJ be hosted

on any machine for whizh there is an ADA 2cmpiler. The -A7EX :cre

operating system could be used to support this envircrent n are

machines which permit access to - sw-level cev ices :'rom ADA. r r r: e

I

20

of these ADA-based systems could then be measured on both high-level

language machines (such as the INTEL 432 (ADA) machine and the Western

Digital ADA microengine) and on general register machines (such as the

DEC VAX-11/780, the Perkin-Elmer 3200 series, and the IBM 370

architectures) for which compilers are now being constructed.

In order for NADEX to be portable to smaller systems (perscnal

computers), a version of NADEX should be implemented for a Limited

Capability Host. In this system the small system (LCH) should be able

to run local configurations as well submit configurations to a

supporting host to distribute across a NADEX-controlled network. This

system would provide the personal computer user access to the resources

of the network. Small machines such as those running UCSD Pascal or

TSI-ADA are great program development tools but sometimes need access to

larger machine resources.

Further work needs to be done in the area of run-time specification

and validation of inter-program communications protocols. Programs

(sequential or concurrent) in software configurations communicate via

ports which have low-level properties such as number of buffers. The

NADEX core operating system validates only the number of buffers used

between programs. However, at the programmer level these ports are data

streams. Any protocol between programs exists only in the programmer's

mind. A syntax to describe these inter-program protocols is needed so

that (1) the programmer can describe them in a descriptive manner, 2)

the system can compile these descriPtions, and 13) when these programs

are combined together into a software :cnftgurati~n, the crcering anz

typing of messages exchanged between r:rams -an be thecKec fr~

, al idi ty.

21

The syntax suggested by our research is protocol expressions as

documented in our technical report E 4' .2.4]. Extensions to include

predicates in protocol expressions should also be investigated. The

basic research to be undertaken would be the syntax, semantics and

implementation of a Configuration Description Language which

incorporates tnese inter-program protocol expressiors. Properties of

this language should include hierarchical encapsulation (packaging, and

documentation control. The obvious implementation of this proposed

system is via a preprocessor so that it could be modifiec to adapt to

other programming languages such as ADA.

The NADEX distributed programming environment currently neecs

explicit commands from the user in order to distribute software

configurations across a network. This information resource

availability, data program placement, and frecuency of -rgramdata use

at each site can automatically be c""lecel durio executr.n or tne

NADEX environment. Extensions to permit N ADEX to co le:. and use t...

information woulo support research, ievelcpment and e:erimentationw

automatic network-wide resource alloca ion.

Finally, NADEX performance is strcngly affected b'y tne tranaPort

level 'message system) software complexity. zto pe.: rmanc neecs yet to

be tested on a high-speed local networK. it is hypotnesized tnat -.e

trans port layer of software is the -reatzea - z- :o ertnecK Z:l

cerformance. --us, valuable research in zerf rmance utec

systems would nclude -ev el Cment o -rwar e o f- - :-an

-yer t : -nicrccrcceosor whi. i.c- era : ictz w!a 'r

azsre-opt:: :aas.e. .-he "erf rnance o-f Suoh a y'/te .ns:er

thn-e2std

22

4.0 Anoae List _rf Papers andl Reports

4.1 Paers Publi Outside

4.1.1 V. E. Wallentine, "Experience with Concurrent Pascal as an
Implementation Language," P r .. Conference .n
Micronrocessors La =, Pingree Park Conference Center, Colorado,

August 1979.

Per Brinch Hansen designed and implemented the programming language

Concurrent Pascal C5.11 on a PDF 11/45 at the California 7nStitute of

Technology. In this caper, we present the basic concepts in Concurrent

Pascal and its relationship to Sequential Pascal. Concurrent Pascal nas

been used at KSU to implement several large systems including a

multi-user operating system. We discuss the extensions to the language

necessary to implement these systems. Finally, we discuss the probiems

involved in adapting Concurrent Pascal to several machine environments

including microprocessors with small address spaces.

4.1.2 V. E. Wallentine, "Programming Issues in Distrbuted Systems,!
Proceedings of the Network -PC Workshop, Georgia Institute of
Technology, Atlanta, Georgia, Ncvember 1'93.

if we are to be successful in distributing orcgrams across nighly

distributed systems, we must provide the prcgrammer of dynamically

interconnected cooperating processes a job control language 'sof:ware

configuration control) as easy to use as Hoare's comun at nz

sequential zrocesses. it seems that the most promislng dlrec;ion 's to

extend the concept of the UNIX shell to automatically ,enerate the mere

complex pro occls available to the .arent: . .ce.c-es r evo 'l.j

descrbed. It must then aiso e extenred -.r enerate recresentauons

Df distributacie cnfigurat:ons of communiatin; crocesses. !:rK 7n

this area is :nderway at Karoas Zatehe

_ _ _ _ _ _ _ _ Stt]iestv oii7

23

develocment of a Network Aaptable EXecutive (NADEX). The attempt is to

permit the user to specify data flow at the command level and have the

command interpreter generate a distributable software configuration of

nodes connected by full duplex data transfer stream connections (DTS

connections) to form an undirected graph. In general, a node may be

thought of as a process. Each of the connections consists cf twu

independent bi-directional data transfer streams. One of these streams

uses small parameters while the other uses a standard-sized data buffer.

The data buffers carry along with them size and status indicators

whereas the parameter buffers contain only a small amount of

user-supplied data. in this paper we present a brief overview of the

properties of software configurations.

4.1.3 F. J. Maryanski, P. S. Fisher, and V. E. Wallentine, "Data Access

in Distributed Data Base Management Systems," Journal of
Information and Management, Vol. 2, Number 6, North-Holland Publ.

Co., December 1979.

Distributed data base systems have been advocated as the solution

to a large number of data processing problems by increasing data

accessibility, security, and throughput while reducing cost and resource

requirements. Unfortunately, commercially available distributed data

base systems have not yet appeared. This paper attempts to provide the

potential user or designer of a distributed data base system with an

understanding of the basic operational characteristics of such systems.

The emphasis is upon the mechanism for data access which is an essential

component of any 4ata base system. Our intention is that the reader

gain an appreciation of the capab ilitis and ccmplexities of distributed

data base management from the explanation of the data access mechanism.

24

This paper first discusses the basic structure of distributed data

base systems by detailing the functions of the system components. Then

in parts three and four, mechanisms are presented for the placement and

access of data in a distributed data base system. The fifth part deals

with the movement of data among machines and then the sixth section

briefly discusses the concept of multiprocessor backend machines. The

final portion discusses data integrity considerations in distributec

data bases.

4.1.4 V. E. Wallentine and R. A. Young, "NADEX--An Environment for

Distributed Programming," In preparation for the Journal of
Computer Networks, June 1981.

User access to resources in a computer network has typically taken

the form of communicating sequential processes. in such systems, a user

process executes an application program; and whenever it needs access to

a resource, it sends a message to a system (.server) process on some

machine in the network which manifests requested resource (-or example,

a file or device). The server process then accesses the resource and

returns a message to the application. Current extant systems [5.23

provide for the distribution of multiple servers for file or device

access to communicate to a single application process. Medusa [5.5] and

Star OS [5.4] extend this facility to the "task force" concept where the

tasks on a tightly coupled set of machines can form a general graph :f

communicating processes. in this paper, we discuss a -:stributec

programming environment called NADEX (Network ADaptable EXecutlve) wnlch

supports the distribution of software configuraticns across Icosely

coupled networks. These software configurations are general graphs of

programs where each node communicates vZ4a ports. This extends the work

of Hoare's CSP 5.3] by buffering on the connected ports and by

permitting nodes to be concurrent as well as sequential programs. We

first present the concepts of software configurations and their use. We

conclude with the structure of the NADEX implementation concepts.

a.2 SU. 7ehia Reports

4.2.1 R. A. Young and V. E. Wallentine, "The NADEX Core Ccerating

System Services, Tech. Rpt. KSU-CS-TR-79-11, February 1979.

NADEX is an operating system whose objective is to support modular

programming. This concept of "programming in the small" which has been

so successful in UNIX [5.71--in the form of pipelines of communicating

sequential processes--is extended to support general graphs of

communicating sequential graphs (CSP) r5.3] under NADEX. These general

graphs are called software configurations and consist of nodes which

communicate via Data Transfer Streams (DTSs). These DTSs are

full-duplex in nature and, therefore, support bi-directional

communz.cation between any two nodes which they connect. Nodes access

DTSs via ports. These ports are distribution-independent and,

therefore, permit nodes of a configuration to be distributed across a

computer network without reprogramming.

MADEX supports three programmer views--the single node programming

view, tne data flow abstraction, rl te overall software configuration

structure. :t provides the *ompLIers and PREFIX :or cequential and

:oncurrent programs, the DTS ocerations, and the onfig'irat n

descriptor for a istributable configuratlcn, respectiely, :fr these

programmer views. :t a-zo perm:r.3 epresszcn of these views in a -ser

26

tailored system. Command processors, utility subsystems (such as file

systems), and configuration description languages can be specified by

the user. These systems can be constructed upon NADEX which provides

only the essential elements of an operating system--interprocess

communication, a representation for distributable, communicating

processes (software configurations), and resource allocation.

It is the DTS concept which permits software configurations to be

distributed across a computer network controlled by NADEX. In this

document, we briefly describe the structure of NADEX, the basic concepts

of software configurations, and the services supplied by the NADEX Core

Operating System (Core OS). We assume the reader has knowledge of

Sequential and/or Concurrent Pascal [5.1] and a basic knowledge of

conventional OS services or a set of desired OS services. Under this

assumption, this document contains sufficient material to enable tie

reader to program normal user programs as well as his or her own command

processors and subsystems, such as a file system.

4.2.2 R. A. Young and V. E. Wallentine, "The Structure of the NADEX

Operating System," Tech. Rpt. KSU-CS-TR-79-12, November 1979.

NADEX is an acronym for Network ADaptable EXecutive. NADEX

supports the building of software configurations which consist of a

general graph of communicating nodes. These nodes may be sequential or

concurrent programs which access NADEX services through a native PREFIX.

The PREFIX concept was originally defined by Per Brinch Hansen as an

interface to the SOLO '5.1] operating system. The NADEX Native PREF:X

43 the interface to the NADEX Core OS and provides d.ata flow

abstractions to the program running in a node. These operations perm:t

27

each program (running in a node) to exchange messages with other nodes

in a software configuration via full-duplex data transfer streams.

In this document, we first present the concept of a software

configuration. We then present the general structure of NADEX.

Finally, we describe the function of each module of the NADEX Core OS as

it is written in Concurrent Pascal [5.11.

4.2.3 R. A. Young and V. E. Wallentine, "Implementation of the Kernel
of Concurrent Pascal/32, Tech. Rpt. KSU-CS-TR-79-13, December
1979.

Based on the structured multiprocessing concepts in CPASCAL, we

chose CPASCAL as the implementation language for a multi-user operating

system called NADEX--Network ADaptable EXecutive. In the design of

NADEX, CPASCAL concepts were kept in mind. The dynamic allocation of

resources (buffers and memory) required that the manager concept be

implemented as an extension to CPASCAL. In order to pass data between

processes in an efficient manner, it was decided to add ros as

system components. Thus, a reduction in the amount of data copying into

and out of data encapsuled in classes is achieved. A side benefit of

records is that user access to shared data need not be constrained to

any particular data encapsulation-entry procedure. The mechanism to

achieve the dynamic allocation of these system components to processes

is controlled pointers to system components. These pointers, to classes

and records, are destructive assirment feven as parameters) so that no

new t.ime-dependent error possibilities are introduced into CPAS3CAL.

A second extension was to introduce hierarchical concurrent

programs. This support, in contrast to the first extension wh:ch

required only compiler changes, requires extensive kernel support. The

kernel must be aware of the multiple levels of concurrent programs. r.

this document, we discuss the support necessary for multiple 7tvelz of

processes. A third extension was facilitated by our implementation of

the kernel. We coded a portion of the kernel in Sequential Pascal wn .ch

permits easy modification of the functions within the kernel. Thus, new

entry points to the kernel could be required. To solve this problem, we

introduced a kernel prefix 3o that no compiler changes are nucessary

when new functions are added to or changed in the kernel.

4.2.4 K. L. Rochat and V. E. Wallentine, "A Software System Structuring
Tool for Message-based Systems, Tech. Rpt. KS-CS-T.-&-, u,
August 1980.

Interest in message-bused systems which support software

configurations is increasing. A 3oftware configuration is a network of

processes connected together by ports through which they communicate.

The Software Systems Structuring Tool (S1T is an atemt to integrate

the common aspects of message-oased systems into a software engineer-ng

tool for the construction of software configurations.

This tool supports the typed interconnection of modules which

allows the verification of the correctness and completeneso of

interconnection, incremental construct,-on of configuraticns, and an

implemertat~lon-indeperdent .tructure representa-::n. uses

independently compiled modules with type(: ports :onctr't

t rizu t cn- inderendent :onfiguraticn3.

The arilivy to rovil.e entancec neip infcrmat onr, i-lw the

speciflcatlon of parameters "y 3cs~t~on ar Keywcr-., an,: ermlt tho

A

29

construction of software configurations usiL# named ports are features

which the user will appreciate. In addition, this tool describes the

resources needed to execute each module.

This structuring system has been implemented at Kansas State

University in conjunction with the NADEX operating system.

4.2.5 R. Fundis and V. E. Wallentine, "Command Processors for Dynamic
Control of Software Configurations," Tech. Rpt. KSU-CS-TR-80-02,
August 1980.

Command language facilities for the construction and execution of

software configurations (networks of communicating processes) are very

limited today because current operating systems do not support this

level of complexity. The Network ADaptable EXecutive (NADEX) is an

operating system which was designed to support dynamic configurations

(those configurations which are constructed at command interpretation

time) of cooperdting processes. These dynamic configurations include

arbitrary graphs which may contain cycles. Three command processors

have been developed to demonstrate the sufficiency of the NADEX

facilities to support dynamic configurations.

NADEX facilities, an overview of the Job Control System, and the

command processor configuration environment are presented, followed by

user's guides for the command processors. Each command processor has

different responsibilities and capabilities for handling configurations.

The NADEX static command processor executes completely connected

confIgurations. The UNIX command proceszcr a!lcws linear configurations

to be constructed dynamically, and the MIRACLE command processor allows

the dynamic conztruction of arbitrary configurations. Syntax 3raphs and

30

sample user sessions are presented for each command processor.

4.2.6 R. L. Rochat and V. E. Wallentine, "NADEX Job Control System
Implementation," Tech. Rpt. KSU CS-TR-80-05, July 1980.

NADEX is an operating system whose objective is to support modular

programming. This concept of "programming in the small" which has beer.

so successful in UNIX [5.71 (in the form of pipelines of communicating

sequential processes) is extended to support general graphs of

communicating sequential programs under NADEX. These general graphs are

called software configurations and consist of nodes which communicate

via Data Transfer Streams (DTSs). :hese DTSs are full-duolex in nature

and, therefore, support bi-directional communication between any two

nodes which they connect. Nodes access DTSs via ports. These pcrts are

distribution-independent and, therefore, permit nodes of a configuration

to be distributed across a computer network without reprogramming. :n

this paper the software tools which support the construction of software

configurations are described. These tools consist of an interactive

partial configuration descriptor (PCD) builder, a ?CD decompiler tex.

formatter), and a linker of nodes (LINK program). They form the basis

for the job control system of NADEX.

4.2.7 R. L. Rochat and V. E. Wallentine, "NIADEX Utility Programs,"

Tech. Rpt. KSU-CS-TR-80-06, August 1980.

in this paper two utility programs are escrized which add

capabilities to MADEX. These programs are a n-erarchicai fie aystem

"HFS program) and a program which allows a single console node to oe

31

shared by several nodes of a user's configuration--a console multiplexor

(CM program). These programs were developed for uce with the dynamic

command processors [4.2.5]. The reader is assumed to be acquainted with

Sequential and Concurrent Pascal [5.1], the command processor functions

[4.2.5], and the services of NADEX [4.2.1].

4.2.8 R. Sanders, "A Graphics Support System for Programming
Communicating Processes," Tech. Rpt. KSU-CS-TR-8O-CI, August
1980.

The complexity of many sophisticated programming tasks requires a

methodology to simplify and filter information to a manageanle level.

The GSS (Graphics Support System) described in this dcument will draw

pictures of software configurations. A configuration Z a cirectec

graph containing one to eight nodes. Each node -an consist of a

sequential or concurrent program, be hierarcnacal in nature, an: can

itself be a configuration.

The most important contribution of 3SS is tne metnod use to

determine the complex relationships that exist -etween the :1:ture

components.

Arbitrary cornigurations car be decomposed into three cisttnt

types of object3: hangers, pipes, and ycles. The eccmpos:t~on :

accomplished by following and analyzing all of the node onnect::r.z !r

constructing patterns of linkage. The purpose -f tui: :ng et s

lefine a preci:taole, rezeataole neuristz2 that i l r-w r 7

'he lesired manner. The number)f nccez -. -n ee eerne "

shape of the Db'ect. An object's 3race is se _ _ "

pattern whion efines now the no des w:1 e 4rawn -'-Ko t:,e

32

another. Flow into and out of nodes is studied to determine where they

should be placed relative to the picture and relative to other nodes

within their parent object.

GSS allows the user to interact in the drawing portions of a

picture or will draw the picture without user assistance. GSS does not

build configurations. It is meant as a documentation tool that assist3

in the understanding of a software configuration.

4.2.9 D. E. Eaton and V. E. Wallentine, "Hosting the NADEX Envirrment
on the UNIX Operating System," Tech. Rpt. KSU-CS-TR-61-C2, May
1981.

Command language facilities for the ccnstruction and execution of

software configurations 'networks of communicating processes) are very

limited today because current operating systems do not support thi:

level of complexity. The Network ADaptable EXecutive (NADEX: was

designed to support dynamic configurations "those 2or.figuratIons wh

are constructed at command interpretat'n t'me) of :oocerating

processes. These dynamac 2orfiguratcorns include aroi trary iraphs wh'sn

may contain cycles. The NA EX envircrinent runu on top :f the NA:EX :cre

operating 2ystem. The ooect of this work is to make -ne NA7EX

environment so it will run with the 'NX 'a trademark of Bell

L.aboratortes! ;perating 3ysem a3 i:s sore :)era':ng zystem.

4.2.10 V. E. Wallentr_,e, R . A. Young, K. L. ?2ocnat- anc .~

..ovemcer 150

In this documient w:e oescribe tne Lm- l~mrt.o tI

.ie liscuss trne oasi,2 oorcepts o: .-oftware conf'igurations, o:~~ra:

properties, 3ubsyste.3, ynamli :onrnectlr. :0 Sun-syzter:

of ccrnfijirc.tiorns, oaaca ::'ansfer stream rrap ping,

-he levei of _ e t -1 pr-v-:zec cer v e s n .r 1 n

o notning of' the ::.__-X Co re 3perating .zy:er-.

:4.2. 1 . . i~tle.en, V. ella :yon..L:~.c:~
V ar- ants of 'Pascal) -Coc e ! 1a c1n .: n '~::~.e,>

-.. eort is a -:c r i~ lor an' effort ~:zc:fy

-oce-,7enerat ;cn porzaor. of .:..u Iza L;s o o 2 rr e-: ,al 2§2

2onpiler so th 'at it i.l _-11 rotuce D, 4ect :o f :r ::-r<

tk on.;: na' :ompiler -enera--e 1 P-Coctf 'P~z:al >.<:in;t :>

zo m~ aonirne. .n :o2fe er3.cn'~ . -

-C' e . ne s.3.. r:y of I ltr,.; :c 3 zr. .3e od

r eq u Ired n octZf a;.onrs w o,; I tne s ran:ra', i.

language 'conztr'.ots ot' -on:-:':'ent Pascal ~n~:s,;'xr

, asily man o-nto t.ne mi :'qenrAh' a 'cecit~r-.

rco , r :.e 1' 2 1 1 r n 1 e 1*.'e d= 7 1

A fe A. r _ a Z L. r

ow n.-:: 2 .'< r

5.Ij References

5. • Brinch Hansen, P. The Architecture of Concurrent Programs,
Prentice-Hall, 1979.

5.2 Forsdick, A. C., et a!. Operating Systems for Computer NetworKs,
Computer, 11, 1 (Jan. 1973), pp 48-57.

5.3 Hoare, C. A. R., Communicating Sequential Processes, Comm. of ACM
21, 3, (August 1978), pp 666-677.

5.4 Jones, A. K., et al. Star OS, a ..ultiprocessor Cperating y3:en
for :he Support of Task Forces. Froc. -tr. Symp.. xperalitng Cysterm
?r-nciples, SIGCPS, 1979 cc P5-3G

5.5 Ousterhout, W. K., et ai. :.edusa: An Experiment In 'istri-ute -
Cperating SyStem structure, Comm. of ACM, 23, 2 (Feb. 1980), p
92-1C5.

5.6 Sunshine, C., Interprocess Communication Extensions for the UNL(
perating System: i. Design Consi._erat:ons, sand Tecn. Report

..- 064/1-AF, June 977.

5.1 Thompson, K. and Ritchie, D. M., The UNIX -vz _.e- Syste-,
Comm. ACM, 17, 7, (July 1974), pp 365-375.

5.3 Zucker, S., Tnerprocess Communica-ion ExtensIons :or r.e :i2IX
C perating System: II. implementation, Rana Tech. Reort
.--2064/2-AF, June 1977.

eascal :-ho(e Assemailer -2.:

NADE:(Core CS 463
Cent ral z e,- ? BI 3053

Ccmrzan ?odr
M;IRC 3C52
'UNIX 226 8

368

File Sy'ste~s
zHerarchical Fie ys- er 113
.,e-:work File Sy--,Iem 1662
Local File Syster :

N etwor'K Con-,rol
..etwor'k Conf lura*2.c 1r 76 9
Transport:(~C)16

L- a .ic Support 2 2

PC'. 3uller
?CC Decomnpiler 91
:orscle -Subsystem

- otal ,3-w

zar, !c 6r'~ Ph.D., Aug. 193C

'Kji Rochat - I.S., Aug. '90

Roxanne Fciza -I .S., Aug. Q9tC

Rihare. Sanz-ers -M. S. Aug. '9 C

Denis Eat~r. M.S., Jar.. 198

,Mark Li11.e..en -uS., Jr. 3

Robert Youn.-
Pa: ri,_2k :reL--an

-3 eg nie-.ric-

ar nI

D AT

FILMED

ITI

